Important Points of Supervised Learning


For the first time ever I had opportunity to go for a multi-day fishing trip with a group of friends by a local fishing boat. This trip was 6 days long, spent roughly 100 hours in the middle of ocean, within the range of 20-50 nautical miles. This was totally a different experience in my life and during the trip I tried to learn something on supervised learning.

So let’s go…



  • Supervised learning models learn from any given labeled data. They are known as training data.
  • Training data contains different patterns.
  • The algorithm will learn underlying patterns during the training process.
  • In testing phase, training data set helps models to predict a desired outcome for unforeseen data.

Supervised Learning Algorithms

  • k-Nearest Neighbors
  • Linear Regression
    • formula for linear regression, Y= ax+b
  • Logistic Regression
    • formula for logistic regression, y = ln(P/(1-P))
  • Support Vector Machines (SVM)
  • Decision Trees and Random Forests
  • Neural Networks

Advantages of Supervised Learning

  • Supervised learning is easy to understand.
  • Number of classes or parameter will be known before model is deployed.

Challenges of Supervised Learning

  • It requires some amount of expertise to structure accurately.
  • Training a proper models can be very time intensive.
  • Human errors in the datasets can cause poor algorithms.
  • It cannot cluster or classify data on its own.

Supervised Learning Models Can Be Used in:

  • Image and object recognition: Supervised learning algorithms can be used to identify objects in a videos or images.
  • Predictive analytics: It provides deep insights into various business data points. Helps companies to take decisions more easily and accurately.
  • Customer sentiment analysis: Easy to extract and classify important pieces of information from large volumes of data such as emotion, intent and context.
  • Spam detection: Classification algorithms is used to recognize patterns or anomalies in a dataset.